目前直线电动机直接驱动技术的发展呈现出以下趋势:
1.机床进给系统用直线伺服电动机,将以永磁式为主导:
2.将电动机、编码器、导轨、电缆等集成,减小电动机尺寸,便于安装和使用:
3.将各功能部件(导轨、编码器、轴承、接线器等)模块化:
4.注重相关技术的发展,如位置反馈元件、控制技术等,这是提高直线电动机性能的基础。
直线电机结构设计
直线电动机包括初、次级磁路结构以及支撑、传感测量、冷却、防尘、防护等机械结构。
磁路设计 磁路设计最重要的任务是使电动机的推力和推力波动达到设计要求。
电动机内磁场分布的计算是磁路设计的基础。由于结构的特殊性,使得直线电动机存在端部效应,引起磁场的畸变,同时使用硅钢片等软磁材料来聚合磁路,媒质边界曲折交错、磁路复杂、非线性强。如果采用传统的等效磁路法或图解法进行计算,将会产生较大的误差,甚至是不可能的。因此目前普遍采用数值解法—主要是用有限元法(FEM)来计算直线电动机的磁场分布,从而进一步计算推力及其波动以及垂直力等性能。目前市场上已经有很多优秀的电磁场FEM软件可供选用,所以用FEM计算直线电动机电磁场的关键点在于建立精确的有限元模型。
减少推力波动是磁路设计的一个重点也是难点。推力波动产生的原因有:初级电流和反电动势存在高次谐波、气隙磁密波形非正弦、齿槽效应、端部效应等。通过优化永磁铁的形状和排列方式、降低永磁励磁磁密、初级采用无铁心和多极结构、增加槽的数目、加大气隙等措施可以减小推力波动,但某些措施会造成其它性能的减弱,所以设计时应综合考虑设计要求,达到最佳效果。
机械结构设计 机械结构涉及的问题很多,在这里我们只强调一下对冷却系统的研究,因为这个问题很容易被忽略。其实热特性是直线电动机的一个重要特性,同一型号的电动机有冷却时的推力峰值是无冷却时的两倍,所以电动机冷却系统的好坏对电动机的性能有很大的影响,从冷却系统着手进行优化设计是提高电动机性能的一条捷径。电动机热特性的分析一般也采用有限元法,在计算结果的基础上对冷却进行优化设计。
上一篇:你还在用锤子敲轴承吗?
下一篇:不锈钢导轨生锈了,有可能吗?